edges.json 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264
  1. [
  2. {
  3. "source": "R01",
  4. "target": "R02",
  5. "type": "successor",
  6. "comment": "理解整数和自然数后,进一步学习有理数分类。"
  7. },
  8. {
  9. "source": "R02",
  10. "target": "R03",
  11. "type": "successor",
  12. "comment": "掌握有理数的种类后才能理解加减法的规则。"
  13. },
  14. {
  15. "source": "R02",
  16. "target": "R04",
  17. "type": "successor",
  18. "comment": "乘除法基于有理数分类与符号理解。"
  19. },
  20. {
  21. "source": "R03",
  22. "target": "R04",
  23. "type": "successor",
  24. "comment": "加减法是乘除法学习的基础。"
  25. },
  26. {
  27. "source": "R04",
  28. "target": "R05",
  29. "type": "successor",
  30. "comment": "幂与指数运算基于乘法定义。"
  31. },
  32. {
  33. "source": "R03",
  34. "target": "A01",
  35. "type": "prerequisite",
  36. "comment": "理解有理数运算后才能学习代数式。"
  37. },
  38. {
  39. "source": "A01",
  40. "target": "A02",
  41. "type": "successor",
  42. "comment": "代数式概念是整式概念的基础。"
  43. },
  44. {
  45. "source": "A02",
  46. "target": "A03",
  47. "type": "successor",
  48. "comment": "整式分类后进入同类项合并学习。"
  49. },
  50. {
  51. "source": "A03",
  52. "target": "A04",
  53. "type": "successor",
  54. "comment": "掌握同类项后学习整式加减(去括号)。"
  55. },
  56. {
  57. "source": "A04",
  58. "target": "A05",
  59. "type": "successor",
  60. "comment": "整式加减是多项式乘法的基础。"
  61. },
  62. {
  63. "source": "A05",
  64. "target": "A06",
  65. "type": "successor",
  66. "comment": "特殊乘法公式在整式乘法基础上发展而来。"
  67. },
  68. {
  69. "source": "A06",
  70. "target": "A07",
  71. "type": "successor",
  72. "comment": "因式分解的公式法依赖乘法公式。"
  73. },
  74. {
  75. "source": "A07",
  76. "target": "A08",
  77. "type": "successor",
  78. "comment": "基础因式分解掌握后才能学习复杂技巧,如分组分解、十字相乘。"
  79. },
  80. {
  81. "source": "A08",
  82. "target": "A09",
  83. "type": "successor",
  84. "comment": "综合因式分解依赖多种因式分解方法的整合。"
  85. },
  86. {
  87. "source": "A07",
  88. "target": "F02",
  89. "type": "crosslink",
  90. "comment": "分式约分必须依赖因式分解。"
  91. },
  92. {
  93. "source": "A08",
  94. "target": "F06",
  95. "type": "crosslink",
  96. "comment": "复杂分式化简需要高级因式分解技巧。"
  97. },
  98. {
  99. "source": "F01",
  100. "target": "F02",
  101. "type": "successor",
  102. "comment": "理解分式基础后进入分式约分。"
  103. },
  104. {
  105. "source": "F02",
  106. "target": "F03",
  107. "type": "successor",
  108. "comment": "约分完成后才能进行通分。"
  109. },
  110. {
  111. "source": "F03",
  112. "target": "F04",
  113. "type": "successor",
  114. "comment": "通分后才能进行分式加减。"
  115. },
  116. {
  117. "source": "F02",
  118. "target": "F05",
  119. "type": "successor",
  120. "comment": "分式乘除依赖因式约分。"
  121. },
  122. {
  123. "source": "F04",
  124. "target": "F06",
  125. "type": "successor",
  126. "comment": "分式运算基础完成后进入综合化简。"
  127. },
  128. {
  129. "source": "R07",
  130. "target": "RS01",
  131. "type": "prerequisite",
  132. "comment": "平方根建立在平方运算基础之上。"
  133. },
  134. {
  135. "source": "RS01",
  136. "target": "RS03",
  137. "type": "successor",
  138. "comment": "平方根性质引出根式基本性质。"
  139. },
  140. {
  141. "source": "RS03",
  142. "target": "RS04",
  143. "type": "successor",
  144. "comment": "根式的基本性质用于根式化简。"
  145. },
  146. {
  147. "source": "RS04",
  148. "target": "RS05",
  149. "type": "successor",
  150. "comment": "根式化简后进行混合运算。"
  151. },
  152. {
  153. "source": "A01",
  154. "target": "M01A",
  155. "type": "crosslink",
  156. "comment": "代数式基础用于实际情境的数量关系表达。"
  157. },
  158. {
  159. "source": "M01A",
  160. "target": "M01B",
  161. "type": "successor",
  162. "comment": "从表达数量关系进入建模关系分析。"
  163. },
  164. {
  165. "source": "M01B",
  166. "target": "M01C",
  167. "type": "successor",
  168. "comment": "复杂代数式建模基于简单建模能力。"
  169. },
  170. {
  171. "source": "A04",
  172. "target": "E01A",
  173. "type": "prerequisite",
  174. "comment": "整式运算能力是学习一元一次方程基础。"
  175. },
  176. {
  177. "source": "A06",
  178. "target": "E05C",
  179. "type": "crosslink",
  180. "comment": "部分二次方程可通过因式分解求解。"
  181. },
  182. {
  183. "source": "RS04",
  184. "target": "H03",
  185. "type": "crosslink",
  186. "comment": "根式化简常用于二次函数顶点式相关计算。"
  187. },
  188. {
  189. "source": "A05",
  190. "target": "H02",
  191. "type": "crosslink",
  192. "comment": "一次函数代数式运算依赖整式运算。"
  193. },
  194. {
  195. "source": "A07",
  196. "target": "H04",
  197. "type": "crosslink",
  198. "comment": "二次函数最值常通过因式分解观察图像特征。"
  199. },
  200. {
  201. "source": "A04",
  202. "target": "E01A",
  203. "type": "prerequisite",
  204. "comment": "整式加减能力是一元一次方程移项与化简的基础。"
  205. },
  206. {
  207. "source": "A03",
  208. "target": "E01B",
  209. "type": "prerequisite",
  210. "comment": "同类项合并直接用于方程化简。"
  211. },
  212. {
  213. "source": "R03",
  214. "target": "E01A",
  215. "type": "prerequisite",
  216. "comment": "有理数加减是方程等式变形的根基。"
  217. },
  218. {
  219. "source": "E01A",
  220. "target": "E01B",
  221. "type": "successor",
  222. "comment": "掌握等式性质后才能熟练移项与合并同类项。"
  223. },
  224. {
  225. "source": "E01B",
  226. "target": "E01C",
  227. "type": "successor",
  228. "comment": "进行方程检验必须在化简后进行。"
  229. },
  230. {
  231. "source": "E01A",
  232. "target": "E02A",
  233. "type": "prerequisite",
  234. "comment": "方程组代入法需要一元一次方程的基础。"
  235. },
  236. {
  237. "source": "E01B",
  238. "target": "E02B",
  239. "type": "prerequisite",
  240. "comment": "加减法消元依赖方程移项与合并技巧。"
  241. },
  242. {
  243. "source": "E02A",
  244. "target": "E02C",
  245. "type": "successor",
  246. "comment": "掌握代入法后进入实际问题的建模应用。"
  247. },
  248. {
  249. "source": "E02B",
  250. "target": "E02C",
  251. "type": "successor",
  252. "comment": "加减法方法熟练后可用于应用方程组求解。"
  253. },
  254. {
  255. "source": "E01A",
  256. "target": "E03A",
  257. "type": "prerequisite",
  258. "comment": "不等式性质基于等式变形思想。"
  259. },
  260. {
  261. "source": "E03A",
  262. "target": "E03B",
  263. "type": "successor",
  264. "comment": "不等式性质掌握后进入不等式求解。"
  265. },
  266. {
  267. "source": "E03B",
  268. "target": "E03C",
  269. "type": "successor",
  270. "comment": "解集的表示必须在求解后进行。"
  271. },
  272. {
  273. "source": "E03C",
  274. "target": "E03D",
  275. "type": "successor",
  276. "comment": "不等式组的解集建立在单个不等式解集基础上。"
  277. },
  278. {
  279. "source": "F03",
  280. "target": "E04B",
  281. "type": "prerequisite",
  282. "comment": "分式方程去分母必须先掌握通分。"
  283. },
  284. {
  285. "source": "F02",
  286. "target": "E04B",
  287. "type": "prerequisite",
  288. "comment": "分式约分用于方程去分母后化简。"
  289. },
  290. {
  291. "source": "E04B",
  292. "target": "E04C",
  293. "type": "successor",
  294. "comment": "去分母后需检验增根,这是分式方程核心步骤。"
  295. },
  296. {
  297. "source": "E04A",
  298. "target": "E04B",
  299. "type": "successor",
  300. "comment": "理解分式方程基本概念后进入求解过程。"
  301. },
  302. {
  303. "source": "A06",
  304. "target": "E05C",
  305. "type": "prerequisite",
  306. "comment": "因式分解是部分一元二次方程求解的基础方法。"
  307. },
  308. {
  309. "source": "R05",
  310. "target": "E05A",
  311. "type": "prerequisite",
  312. "comment": "指数运算性质用于二次项处理与配平方化简。"
  313. },
  314. {
  315. "source": "E01B",
  316. "target": "E05A",
  317. "type": "prerequisite",
  318. "comment": "配方法需要熟练的一次项移项技巧。"
  319. },
  320. {
  321. "source": "E05A",
  322. "target": "E05B",
  323. "type": "successor",
  324. "comment": "求根公式由配方法推导而来,因此配方法是求根公式的基础。"
  325. },
  326. {
  327. "source": "E05B",
  328. "target": "E05E",
  329. "type": "successor",
  330. "comment": "根的分布判断依赖判别式与求根公式。"
  331. },
  332. {
  333. "source": "E05B",
  334. "target": "E05D",
  335. "type": "successor",
  336. "comment": "韦达定理建立在求根公式与二次方程根的性质之上。"
  337. },
  338. {
  339. "source": "E05C",
  340. "target": "E05D",
  341. "type": "crosslink",
  342. "comment": "部分韦达定理题可通过构造因式快速求解。"
  343. },
  344. {
  345. "source": "E05D",
  346. "target": "H04",
  347. "type": "crosslink",
  348. "comment": "二次函数最值常依赖顶点坐标与韦达定理的结合。"
  349. },
  350. {
  351. "source": "E01A",
  352. "target": "APP_E1",
  353. "type": "prerequisite",
  354. "comment": "行程问题建模以简单方程为基础。"
  355. },
  356. {
  357. "source": "APP_E1",
  358. "target": "APP_E4",
  359. "type": "crosslink",
  360. "comment": "行程模型常可转化为几何方程模型。"
  361. },
  362. {
  363. "source": "E02C",
  364. "target": "APP_E2",
  365. "type": "crosslink",
  366. "comment": "工程问题通常建立方程组。"
  367. },
  368. {
  369. "source": "F06",
  370. "target": "APP_E3",
  371. "type": "crosslink",
  372. "comment": "溶液浓度问题常涉及复杂分式化简。"
  373. },
  374. {
  375. "source": "E05A",
  376. "target": "APP_E4",
  377. "type": "crosslink",
  378. "comment": "几何方程建模常需用到配方法求关键点位置。"
  379. },
  380. {
  381. "source": "E05B",
  382. "target": "APP_E4",
  383. "type": "crosslink",
  384. "comment": "复杂几何模型需应用求根公式判断距离与位置关系。"
  385. },
  386. {
  387. "source": "H02",
  388. "target": "E02C",
  389. "type": "crosslink",
  390. "comment": "函数代数结构可用于建立二元一次方程组模型。"
  391. },
  392. {
  393. "source": "A09",
  394. "target": "E05A",
  395. "type": "crosslink",
  396. "comment": "复杂二次方程常需先进行代数式综合化简才能求解。"
  397. },
  398. {
  399. "source": "RS03",
  400. "target": "E05B",
  401. "type": "crosslink",
  402. "comment": "根式化简用于求根公式中根号部分的处理。"
  403. },
  404. {
  405. "source": "G01A",
  406. "target": "G01B",
  407. "type": "successor",
  408. "comment": "点线面的概念是角的定义基础。"
  409. },
  410. {
  411. "source": "G01B",
  412. "target": "G01C",
  413. "type": "successor",
  414. "comment": "角的分类后学习角的度量。"
  415. },
  416. {
  417. "source": "G01C",
  418. "target": "G01D",
  419. "type": "successor",
  420. "comment": "掌握角度量后可理解对顶角与邻补角关系。"
  421. },
  422. {
  423. "source": "G01D",
  424. "target": "G02A",
  425. "type": "prerequisite",
  426. "comment": "理解对顶角等概念后才能进入平行线判定。"
  427. },
  428. {
  429. "source": "G02A",
  430. "target": "G02B",
  431. "type": "successor",
  432. "comment": "平行线判定后学习其性质。"
  433. },
  434. {
  435. "source": "G02B",
  436. "target": "G02C",
  437. "type": "crosslink",
  438. "comment": "平移是平行线性质的几何变换基础。"
  439. },
  440. {
  441. "source": "G02B",
  442. "target": "G03A",
  443. "type": "prerequisite",
  444. "comment": "平行线性质是理解三角形角关系的基础。"
  445. },
  446. {
  447. "source": "G03A",
  448. "target": "G03B",
  449. "type": "successor",
  450. "comment": "三角形分类后学习三角形内角和与外角定理。"
  451. },
  452. {
  453. "source": "G03B",
  454. "target": "G03C",
  455. "type": "successor",
  456. "comment": "内角关系掌握后可学习三角形不等式与稳定性。"
  457. },
  458. {
  459. "source": "G03C",
  460. "target": "G03D",
  461. "type": "successor",
  462. "comment": "三角形基本性质掌握后才能深入研究角平分线性质。"
  463. },
  464. {
  465. "source": "G03D",
  466. "target": "G03E",
  467. "type": "successor",
  468. "comment": "角平分线与中线、重心性质直接关联。"
  469. },
  470. {
  471. "source": "G03B",
  472. "target": "G03F",
  473. "type": "prerequisite",
  474. "comment": "三角形角与边关系是全等三角形判定基础。"
  475. },
  476. {
  477. "source": "G03F",
  478. "target": "G03G",
  479. "type": "successor",
  480. "comment": "全等判定后进入几何证明与辅助线构造应用。"
  481. },
  482. {
  483. "source": "G03F",
  484. "target": "G04A",
  485. "type": "prerequisite",
  486. "comment": "四边形性质可以用全等三角形证明其定理。"
  487. },
  488. {
  489. "source": "G04A",
  490. "target": "G04B",
  491. "type": "successor",
  492. "comment": "了解四边形分类后进入平行四边形判定。"
  493. },
  494. {
  495. "source": "G04B",
  496. "target": "G04C",
  497. "type": "successor",
  498. "comment": "判定后学习平行四边形性质。"
  499. },
  500. {
  501. "source": "G04C",
  502. "target": "G04D",
  503. "type": "successor",
  504. "comment": "矩形是平行四边形的特例,需先学性质。"
  505. },
  506. {
  507. "source": "G04C",
  508. "target": "G04E",
  509. "type": "successor",
  510. "comment": "菱形性质依赖平行四边形性质。"
  511. },
  512. {
  513. "source": "G04D",
  514. "target": "G04F",
  515. "type": "successor",
  516. "comment": "正方形兼具矩形与菱形所有性质,是综合性质。"
  517. },
  518. {
  519. "source": "G04E",
  520. "target": "G04F",
  521. "type": "successor",
  522. "comment": "正方形也是菱形的特例。"
  523. },
  524. {
  525. "source": "G03F",
  526. "target": "G05A",
  527. "type": "crosslink",
  528. "comment": "圆的性质中大量使用全等三角形(如等弧等弦)。"
  529. },
  530. {
  531. "source": "G05A",
  532. "target": "G05B",
  533. "type": "successor",
  534. "comment": "弦与圆心距关系基于圆的基本结构。"
  535. },
  536. {
  537. "source": "G05B",
  538. "target": "G05C",
  539. "type": "successor",
  540. "comment": "切线性质基于弦和圆心距关系。"
  541. },
  542. {
  543. "source": "G05C",
  544. "target": "G05D",
  545. "type": "successor",
  546. "comment": "圆周角定理依赖切线与弦所构图形分析。"
  547. },
  548. {
  549. "source": "G05D",
  550. "target": "G05E",
  551. "type": "successor",
  552. "comment": "掌握圆周角定理后可学习扇形弧长与面积计算。"
  553. },
  554. {
  555. "source": "G03D",
  556. "target": "G06A",
  557. "type": "crosslink",
  558. "comment": "角平分线常作为辅助线使用于几何证明。"
  559. },
  560. {
  561. "source": "G03F",
  562. "target": "G06A",
  563. "type": "crosslink",
  564. "comment": "全等构造中常通过辅助线使用延长、平移等技巧。"
  565. },
  566. {
  567. "source": "G02C",
  568. "target": "G06A",
  569. "type": "crosslink",
  570. "comment": "平移用于构造平行辅助线。"
  571. },
  572. {
  573. "source": "G06A",
  574. "target": "G06B",
  575. "type": "successor",
  576. "comment": "使用辅助线需要结合数形结合解决复杂应用。"
  577. },
  578. {
  579. "source": "G06B",
  580. "target": "G06C",
  581. "type": "successor",
  582. "comment": "数形结合能力是几何证明与推理的核心基础。"
  583. },
  584. {
  585. "source": "G03F",
  586. "target": "SIM01A",
  587. "type": "crosslink",
  588. "comment": "相似三角形概念依赖全等三角形的边角对应关系。"
  589. },
  590. {
  591. "source": "G02B",
  592. "target": "SIM02D",
  593. "type": "crosslink",
  594. "comment": "平行线分线段比例是相似三角形的重要来源。"
  595. },
  596. {
  597. "source": "G03B",
  598. "target": "PY01A",
  599. "type": "prerequisite",
  600. "comment": "理解三角形角关系后才能学习直角三角形性质。"
  601. },
  602. {
  603. "source": "G05D",
  604. "target": "SIM03A",
  605. "type": "crosslink",
  606. "comment": "圆周角定理常用于相似三角形辅助关系构造。"
  607. },
  608. {
  609. "source": "G06C",
  610. "target": "SIM03D",
  611. "type": "crosslink",
  612. "comment": "几何综合证明能力直接影响相似压轴题的推理链。"
  613. },
  614. {
  615. "source": "G04C",
  616. "target": "M04C1",
  617. "type": "crosslink",
  618. "comment": "三角形面积计算需用到平行四边形面积转化。"
  619. },
  620. {
  621. "source": "G05E",
  622. "target": "M04C3",
  623. "type": "crosslink",
  624. "comment": "扇形面积公式来自圆的弧长和圆周角关系。"
  625. },
  626. {
  627. "source": "G03B",
  628. "target": "H01",
  629. "type": "crosslink",
  630. "comment": "三角形角度计算常用于函数图像斜率判断与倾斜角。"
  631. },
  632. {
  633. "source": "G05D",
  634. "target": "H01",
  635. "type": "crosslink",
  636. "comment": "圆周角定理常用于函数图像几何性质的推导与证明。"
  637. },
  638. {
  639. "source": "M04A1",
  640. "target": "M04B1",
  641. "type": "prerequisite",
  642. "comment": "长度单位的理解是计算三角形周长的基础。"
  643. },
  644. {
  645. "source": "M04A1",
  646. "target": "M04B2",
  647. "type": "prerequisite",
  648. "comment": "掌握线段长度后才能正确计算四边形周长。"
  649. },
  650. {
  651. "source": "M04A1",
  652. "target": "M04B3",
  653. "type": "prerequisite",
  654. "comment": "圆周长计算需要长度单位理解。"
  655. },
  656. {
  657. "source": "G03A",
  658. "target": "M04B1",
  659. "type": "crosslink",
  660. "comment": "三角形周长计算依赖三边概念与分类。"
  661. },
  662. {
  663. "source": "G04A",
  664. "target": "M04B2",
  665. "type": "crosslink",
  666. "comment": "四边形周长计算依赖四边形基本分类与性质。"
  667. },
  668. {
  669. "source": "G05A",
  670. "target": "M04B3",
  671. "type": "crosslink",
  672. "comment": "圆的基本性质是圆周长公式的来源。"
  673. },
  674. {
  675. "source": "M04A2",
  676. "target": "M04C1",
  677. "type": "prerequisite",
  678. "comment": "面积单位是三角形面积计算的基础。"
  679. },
  680. {
  681. "source": "M04A2",
  682. "target": "M04C2",
  683. "type": "prerequisite",
  684. "comment": "面积单位理解是平行四边形和梯形面积公式的基础。"
  685. },
  686. {
  687. "source": "M04A2",
  688. "target": "M04C3",
  689. "type": "prerequisite",
  690. "comment": "扇形面积计算依赖面积单位与比例理解。"
  691. },
  692. {
  693. "source": "M04A2",
  694. "target": "M04C4",
  695. "type": "prerequisite",
  696. "comment": "组合图形面积需要单位面积理解。"
  697. },
  698. {
  699. "source": "G03B",
  700. "target": "M04C1",
  701. "type": "crosslink",
  702. "comment": "三角形内角与高的位置关系是面积公式实际使用的关键。"
  703. },
  704. {
  705. "source": "G04C",
  706. "target": "M04C2",
  707. "type": "crosslink",
  708. "comment": "平行四边形性质与面积公式联系紧密。"
  709. },
  710. {
  711. "source": "G05D",
  712. "target": "M04C3",
  713. "type": "crosslink",
  714. "comment": "扇形面积公式来源于圆周角定理与弧长比例关系。"
  715. },
  716. {
  717. "source": "M04C1",
  718. "target": "M04C4",
  719. "type": "successor",
  720. "comment": "掌握基础三角形面积后才能处理组合图形面积。"
  721. },
  722. {
  723. "source": "M04C2",
  724. "target": "M04C4",
  725. "type": "successor",
  726. "comment": "平行四边形与梯形面积用于组合图形的拆分与构造。"
  727. },
  728. {
  729. "source": "M04C3",
  730. "target": "M04C4",
  731. "type": "crosslink",
  732. "comment": "扇形面积常出现在组合图形面积问题中。"
  733. },
  734. {
  735. "source": "M04A3",
  736. "target": "M04D1",
  737. "type": "prerequisite",
  738. "comment": "立方体与长方体体积单位依赖体积单位理解。"
  739. },
  740. {
  741. "source": "M04A3",
  742. "target": "M04D3",
  743. "type": "prerequisite",
  744. "comment": "圆柱体积公式依赖体积单位理解。"
  745. },
  746. {
  747. "source": "M04D1",
  748. "target": "M04D2",
  749. "type": "successor",
  750. "comment": "棱柱体积是长方体体积的推广。"
  751. },
  752. {
  753. "source": "M04D1",
  754. "target": "M04D4",
  755. "type": "crosslink",
  756. "comment": "长方体展开图是理解一般立体展开的基础。"
  757. },
  758. {
  759. "source": "G05A",
  760. "target": "M04D3",
  761. "type": "crosslink",
  762. "comment": "圆柱体积公式来源于圆面积公式。"
  763. },
  764. {
  765. "source": "M04C3",
  766. "target": "M04D3",
  767. "type": "crosslink",
  768. "comment": "扇形面积计算用于圆柱侧面积构造理解。"
  769. },
  770. {
  771. "source": "G02C",
  772. "target": "M04E1",
  773. "type": "crosslink",
  774. "comment": "平移是图形变换的基础,且长度保持性对度量重要。"
  775. },
  776. {
  777. "source": "G03B",
  778. "target": "M04E2",
  779. "type": "crosslink",
  780. "comment": "旋转常用于三角形角度变化分析。"
  781. },
  782. {
  783. "source": "G01D",
  784. "target": "M04E3",
  785. "type": "prerequisite",
  786. "comment": "对顶角、邻补角等角关系是轴对称角度变化理解基础。"
  787. },
  788. {
  789. "source": "M04E1",
  790. "target": "M04E4",
  791. "type": "successor",
  792. "comment": "平移掌握后进入三大变换组合应用。"
  793. },
  794. {
  795. "source": "M04E2",
  796. "target": "M04E4",
  797. "type": "successor",
  798. "comment": "旋转是图形变换综合的重要部分。"
  799. },
  800. {
  801. "source": "M04E3",
  802. "target": "M04E4",
  803. "type": "successor",
  804. "comment": "掌握轴对称后进入综合变换。"
  805. },
  806. {
  807. "source": "M04C4",
  808. "target": "M04F1",
  809. "type": "crosslink",
  810. "comment": "复杂组合图形常通过代数建模处理几何量关系。"
  811. },
  812. {
  813. "source": "M04D3",
  814. "target": "M04F1",
  815. "type": "crosslink",
  816. "comment": "结合立体几何量与代数求未知量。"
  817. },
  818. {
  819. "source": "M04E4",
  820. "target": "M04F2",
  821. "type": "crosslink",
  822. "comment": "几何变换作为中考图形综合计算的重要技巧。"
  823. },
  824. {
  825. "source": "SIM02D",
  826. "target": "M04F2",
  827. "type": "crosslink",
  828. "comment": "相似三角形中常通过面积比例求组合图形面积。"
  829. },
  830. {
  831. "source": "PY01A",
  832. "target": "M04F2",
  833. "type": "crosslink",
  834. "comment": "勾股定理在图形度量综合计算中极为常用。"
  835. },
  836. {
  837. "source": "G03F",
  838. "target": "SIM01A",
  839. "type": "prerequisite",
  840. "comment": "全等三角形中的对应边和对应角概念是相似三角形的基础。"
  841. },
  842. {
  843. "source": "G02B",
  844. "target": "SIM01A",
  845. "type": "crosslink",
  846. "comment": "平行线的对应角、内错角关系常用于构造相似三角形。"
  847. },
  848. {
  849. "source": "SIM01A",
  850. "target": "SIM01B",
  851. "type": "successor",
  852. "comment": "理解相似概念后,首先学习AA相似判定。"
  853. },
  854. {
  855. "source": "SIM01A",
  856. "target": "SIM01C",
  857. "type": "successor",
  858. "comment": "相似的边角对应关系用于SAS比例判定。"
  859. },
  860. {
  861. "source": "SIM01A",
  862. "target": "SIM01D",
  863. "type": "successor",
  864. "comment": "SS比例判定基于相似概念中的边比关系。"
  865. },
  866. {
  867. "source": "G02B",
  868. "target": "SIM01B",
  869. "type": "crosslink",
  870. "comment": "平行线形成对应角相等,因此产生AA相似。"
  871. },
  872. {
  873. "source": "G03B",
  874. "target": "SIM01B",
  875. "type": "crosslink",
  876. "comment": "三角形内角和的使用在AA相似判定中极其常见。"
  877. },
  878. {
  879. "source": "SIM01B",
  880. "target": "SIM01E",
  881. "type": "successor",
  882. "comment": "掌握基础相似判定后进行综合构造与转换。"
  883. },
  884. {
  885. "source": "SIM01C",
  886. "target": "SIM01E",
  887. "type": "successor",
  888. "comment": "边比+夹角的判定常用于中考构造相似。"
  889. },
  890. {
  891. "source": "SIM01D",
  892. "target": "SIM01E",
  893. "type": "successor",
  894. "comment": "SS比例判定后进入构造性质应用。"
  895. },
  896. {
  897. "source": "SIM01B",
  898. "target": "SIM02A",
  899. "type": "prerequisite",
  900. "comment": "一旦判定相似,首先得到边比性质。"
  901. },
  902. {
  903. "source": "SIM02A",
  904. "target": "SIM02B",
  905. "type": "successor",
  906. "comment": "边比平方得到面积比,是相似性质核心。"
  907. },
  908. {
  909. "source": "SIM02B",
  910. "target": "SIM02C",
  911. "type": "successor",
  912. "comment": "面积比推广到体积比,尽管为初步认识。"
  913. },
  914. {
  915. "source": "G02B",
  916. "target": "SIM02D",
  917. "type": "prerequisite",
  918. "comment": "平行线分线段比例是相似性质的重要来源。"
  919. },
  920. {
  921. "source": "SIM02A",
  922. "target": "SIM02D",
  923. "type": "crosslink",
  924. "comment": "比例线段定理可由相似三角形性质推导。"
  925. },
  926. {
  927. "source": "SIM02A",
  928. "target": "SIM02E",
  929. "type": "successor",
  930. "comment": "掌握边比后进入复杂比例构造与代数结合。"
  931. },
  932. {
  933. "source": "SIM02D",
  934. "target": "SIM02E",
  935. "type": "crosslink",
  936. "comment": "比例线段是几何综合比例链的关键。"
  937. },
  938. {
  939. "source": "G03B",
  940. "target": "PY01A",
  941. "type": "prerequisite",
  942. "comment": "三角形角关系是理解直角三角形的基础。"
  943. },
  944. {
  945. "source": "PY01A",
  946. "target": "PY01B",
  947. "type": "successor",
  948. "comment": "勾股逆定理基于勾股正定理。"
  949. },
  950. {
  951. "source": "PY01A",
  952. "target": "PY01C",
  953. "type": "successor",
  954. "comment": "勾股数来自勾股定理的特殊整数解。"
  955. },
  956. {
  957. "source": "PY01A",
  958. "target": "PY01D",
  959. "type": "successor",
  960. "comment": "直角三角形性质依赖勾股定理。"
  961. },
  962. {
  963. "source": "PY01A",
  964. "target": "PY02A",
  965. "type": "prerequisite",
  966. "comment": "距离公式的本质就是勾股定理。"
  967. },
  968. {
  969. "source": "PY01A",
  970. "target": "PY02B",
  971. "type": "prerequisite",
  972. "comment": "最短路径问题多通过反射法构造直角应用勾股定理。"
  973. },
  974. {
  975. "source": "PY01D",
  976. "target": "PY02C",
  977. "type": "prerequisite",
  978. "comment": "复杂图形中的直角关系常依赖直角三角形性质。"
  979. },
  980. {
  981. "source": "SIM02A",
  982. "target": "PY02D",
  983. "type": "crosslink",
  984. "comment": "几何结构中常结合相似三角形与勾股定理求量。"
  985. },
  986. {
  987. "source": "PY01A",
  988. "target": "PY02D",
  989. "type": "crosslink",
  990. "comment": "勾股定理与相似性质是中考压轴题的核心组合。"
  991. },
  992. {
  993. "source": "SIM02D",
  994. "target": "PY02D",
  995. "type": "crosslink",
  996. "comment": "平行线比例定理常用于构造相似与勾股联合结构。"
  997. },
  998. {
  999. "source": "G06A",
  1000. "target": "SIM03A",
  1001. "type": "prerequisite",
  1002. "comment": "辅助线构造是相似构造的关键技能。"
  1003. },
  1004. {
  1005. "source": "SIM01E",
  1006. "target": "SIM03A",
  1007. "type": "successor",
  1008. "comment": "掌握相似判定与构造后进入压轴构造策略。"
  1009. },
  1010. {
  1011. "source": "SIM02A",
  1012. "target": "SIM03B",
  1013. "type": "prerequisite",
  1014. "comment": "比例关系链构建基于相似性质。"
  1015. },
  1016. {
  1017. "source": "SIM02D",
  1018. "target": "SIM03B",
  1019. "type": "crosslink",
  1020. "comment": "平行线比例定理常用于构建多段比例链。"
  1021. },
  1022. {
  1023. "source": "PY01A",
  1024. "target": "SIM03C",
  1025. "type": "crosslink",
  1026. "comment": "构造直角常用于建立相似结构或比例关系。"
  1027. },
  1028. {
  1029. "source": "G06A",
  1030. "target": "SIM03C",
  1031. "type": "crosslink",
  1032. "comment": "通过作垂线等构造直角是几何技巧基础。"
  1033. },
  1034. {
  1035. "source": "SIM03A",
  1036. "target": "SIM03D",
  1037. "type": "successor",
  1038. "comment": "辅助线技巧用于几何综合压轴题。"
  1039. },
  1040. {
  1041. "source": "SIM03B",
  1042. "target": "SIM03D",
  1043. "type": "successor",
  1044. "comment": "比例链是中考压轴几何题的核心结构。"
  1045. },
  1046. {
  1047. "source": "SIM03C",
  1048. "target": "SIM03D",
  1049. "type": "successor",
  1050. "comment": "直角构造与比例链结合用于综合推理。"
  1051. },
  1052. {
  1053. "source": "PY02D",
  1054. "target": "SIM03D",
  1055. "type": "crosslink",
  1056. "comment": "相似 + 勾股联合构成中考压轴题最重要模型。"
  1057. },
  1058. {
  1059. "source": "M04C1",
  1060. "target": "PY02A",
  1061. "type": "crosslink",
  1062. "comment": "面积相关问题常需要使用勾股定理解高或距离。"
  1063. },
  1064. {
  1065. "source": "M04C4",
  1066. "target": "SIM03D",
  1067. "type": "crosslink",
  1068. "comment": "组合图形面积题中大量运用相似与勾股联合推理。"
  1069. },
  1070. {
  1071. "source": "G05D",
  1072. "target": "SIM03D",
  1073. "type": "crosslink",
  1074. "comment": "圆周角定理常用于构造相似或直角结构。"
  1075. },
  1076. {
  1077. "source": "ST01A",
  1078. "target": "ST01B",
  1079. "type": "successor",
  1080. "comment": "获取数据后才能进行分类整理。"
  1081. },
  1082. {
  1083. "source": "ST01B",
  1084. "target": "ST01C",
  1085. "type": "successor",
  1086. "comment": "频数与频率基于数据分类整理。"
  1087. },
  1088. {
  1089. "source": "ST01C",
  1090. "target": "ST02A",
  1091. "type": "prerequisite",
  1092. "comment": "频数与频率是平均数和加权平均数的重要基础。"
  1093. },
  1094. {
  1095. "source": "ST01C",
  1096. "target": "ST02B",
  1097. "type": "prerequisite",
  1098. "comment": "中位数离不开对数据排序与频率分布的理解。"
  1099. },
  1100. {
  1101. "source": "ST01C",
  1102. "target": "ST02C",
  1103. "type": "prerequisite",
  1104. "comment": "众数来源于频数最高的分类。"
  1105. },
  1106. {
  1107. "source": "ST02A",
  1108. "target": "ST03A",
  1109. "type": "prerequisite",
  1110. "comment": "极差分析在平均数基础上理解数据波动。"
  1111. },
  1112. {
  1113. "source": "ST03A",
  1114. "target": "ST03B",
  1115. "type": "successor",
  1116. "comment": "方差是对数据波动程度更深入的度量。"
  1117. },
  1118. {
  1119. "source": "ST03B",
  1120. "target": "ST03C",
  1121. "type": "successor",
  1122. "comment": "标准差基于方差的平方根定义。"
  1123. },
  1124. {
  1125. "source": "ST01C",
  1126. "target": "ST04A",
  1127. "type": "crosslink",
  1128. "comment": "条形图展示频数分布。"
  1129. },
  1130. {
  1131. "source": "ST01C",
  1132. "target": "ST04B",
  1133. "type": "crosslink",
  1134. "comment": "折线图展示趋势变化,基于频数或频率。"
  1135. },
  1136. {
  1137. "source": "ST01C",
  1138. "target": "ST04C",
  1139. "type": "crosslink",
  1140. "comment": "扇形图展示频率比例。"
  1141. },
  1142. {
  1143. "source": "ST04A",
  1144. "target": "ST04D",
  1145. "type": "successor",
  1146. "comment": "掌握基本统计图后进入综合分析图表。"
  1147. },
  1148. {
  1149. "source": "ST04B",
  1150. "target": "ST04D",
  1151. "type": "successor",
  1152. "comment": "折线图趋势分析是综合图表解读的重要组成。"
  1153. },
  1154. {
  1155. "source": "ST04C",
  1156. "target": "ST04D",
  1157. "type": "successor",
  1158. "comment": "扇形图比例为综合图表解读提供关键信息。"
  1159. },
  1160. {
  1161. "source": "ST01A",
  1162. "target": "ST05A",
  1163. "type": "prerequisite",
  1164. "comment": "概率研究之前必须理解随机性来源于数据过程。"
  1165. },
  1166. {
  1167. "source": "ST05A",
  1168. "target": "ST05B",
  1169. "type": "successor",
  1170. "comment": "随机事件概念后学习古典概率(等可能模型)。"
  1171. },
  1172. {
  1173. "source": "ST05A",
  1174. "target": "ST05C",
  1175. "type": "successor",
  1176. "comment": "实验概率来自随机事件的重复试验。"
  1177. },
  1178. {
  1179. "source": "ST05B",
  1180. "target": "ST05D",
  1181. "type": "prerequisite",
  1182. "comment": "树状图和列表法构建样本空间用于古典概率计算。"
  1183. },
  1184. {
  1185. "source": "ST05C",
  1186. "target": "ST05D",
  1187. "type": "crosslink",
  1188. "comment": "实验概率可通过树状图辅助分析复杂事件的频率。"
  1189. },
  1190. {
  1191. "source": "ST02A",
  1192. "target": "ST06A",
  1193. "type": "crosslink",
  1194. "comment": "平均数是统计综合题的核心基础。"
  1195. },
  1196. {
  1197. "source": "ST02B",
  1198. "target": "ST06A",
  1199. "type": "crosslink",
  1200. "comment": "中位数常用于数据趋势判断。"
  1201. },
  1202. {
  1203. "source": "ST03C",
  1204. "target": "ST06A",
  1205. "type": "crosslink",
  1206. "comment": "标准差用于判断数据稳定性(新课标核心)。"
  1207. },
  1208. {
  1209. "source": "ST04D",
  1210. "target": "ST06A",
  1211. "type": "prerequisite",
  1212. "comment": "综合统计图分析常出现在数据统计综合题中。"
  1213. },
  1214. {
  1215. "source": "ST05B",
  1216. "target": "ST06B",
  1217. "type": "prerequisite",
  1218. "comment": "古典概率用于概率综合题第一阶段分析。"
  1219. },
  1220. {
  1221. "source": "ST05D",
  1222. "target": "ST06B",
  1223. "type": "prerequisite",
  1224. "comment": "树状图+列表法用于概率综合题中的多阶段概率。"
  1225. },
  1226. {
  1227. "source": "ST05C",
  1228. "target": "ST06B",
  1229. "type": "crosslink",
  1230. "comment": "实验概率用于概率综合题中的概率估计与修正。"
  1231. },
  1232. {
  1233. "source": "ST06A",
  1234. "target": "ST06C",
  1235. "type": "successor",
  1236. "comment": "统计判断能力用于现实情境中的概率估计模型。"
  1237. },
  1238. {
  1239. "source": "ST06B",
  1240. "target": "ST06C",
  1241. "type": "successor",
  1242. "comment": "概率分析能力用于综合的统计概率融合问题。"
  1243. },
  1244. {
  1245. "source": "E02C",
  1246. "target": "ST06A",
  1247. "type": "crosslink",
  1248. "comment": "统计量求解中经常将平均数等量转化为方程求解。"
  1249. },
  1250. {
  1251. "source": "H01",
  1252. "target": "ST06A",
  1253. "type": "crosslink",
  1254. "comment": "折线图趋势判断与函数图像的变化率密切相关。"
  1255. },
  1256. {
  1257. "source": "M04C4",
  1258. "target": "ST06C",
  1259. "type": "crosslink",
  1260. "comment": "几何面积变化常结合概率出现于中考融合题。"
  1261. }
  1262. ]