markdown-demo.blade.php 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154
  1. <x-app-layout>
  2. <x-slot name="header">
  3. <h2 class="font-semibold text-xl text-gray-800 leading-tight">
  4. Markdown 渲染器演示
  5. </h2>
  6. </x-slot>
  7. <div class="py-12">
  8. <div class="max-w-7xl mx-auto sm:px-6 lg:px-8">
  9. <div class="bg-white overflow-hidden shadow-sm sm:rounded-lg">
  10. <div class="p-6 text-gray-900">
  11. <h1 class="text-3xl font-bold mb-6">Markdown 渲染器演示</h1>
  12. <div class="mb-8">
  13. <h2 class="text-2xl font-semibold mb-4">基础功能演示</h2>
  14. <x-markdown-renderer :content="
  15. '# 标题演示
  16. ## 二级标题
  17. ### 三级标题
  18. 这是普通段落文本,包含**粗体**、*斜体*和`行内代码`。
  19. ## 列表
  20. ### 无序列表
  21. - 列表项 1
  22. - 列表项 2
  23. - 嵌套项 2.1
  24. - 嵌套项 2.2
  25. - 列表项 3
  26. ### 有序列表
  27. 1. 第一项
  28. 2. 第二项
  29. 3. 第三项
  30. ## 链接和图片
  31. 这是一个[链接示例](https://example.com)。
  32. ## 代码块
  33. ```javascript
  34. function greet(name) {
  35. console.log(`Hello, ${name}!`);
  36. }
  37. greet(\"World\");
  38. ```
  39. ```python
  40. def fibonacci(n):
  41. if n <= 1:
  42. return n
  43. return fibonacci(n-1) + fibonacci(n-2)
  44. ```
  45. ## 表格
  46. | 功能 | 支持 | 说明 |
  47. |------|------|------|
  48. | 标题 | ✅ | H1-H6 支持 |
  49. | 列表 | ✅ | 有序和无序 |
  50. | 代码 | ✅ | 语法高亮 |
  51. | 表格 | ✅ | 完整表格 |
  52. ## 块引用
  53. > 这是一个块引用。
  54. > 可以包含多行文本。
  55. >
  56. > 嵌套引用也是支持的。
  57. ## 分隔线
  58. ---
  59. ## 数学公式
  60. 虽然默认不支持 LaTeX,但可以通过插件扩展支持。'" />
  61. </div>
  62. <div class="mt-12">
  63. <h2 class="text-2xl font-semibold mb-4">LaTeX 数学公式支持</h2>
  64. <div class="bg-gray-50 p-4 rounded-lg mb-4">
  65. <p class="text-sm text-gray-600 mb-2">行内公式示例:</p>
  66. <x-markdown-renderer :content="
  67. '这个公式 \\(ax^2 + bx + c = 0\\) 是一个二次方程。
  68. 求根公式:\\(x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}\\)
  69. 三角函数:\\(\\sin^2\\theta + \\cos^2\\theta = 1\\)'" class="prose max-w-none" />
  70. </div>
  71. <div class="bg-gray-50 p-4 rounded-lg mb-4">
  72. <p class="text-sm text-gray-600 mb-2">块级公式示例:</p>
  73. <x-markdown-renderer :content="
  74. '二次方程求根公式:
  75. $$x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$$
  76. 欧拉公式:
  77. $$e^{i\\pi} + 1 = 0$$
  78. 积分公式:
  79. $$\\int_0^\\infty e^{-x^2} dx = \\frac{\\sqrt{\\pi}}{2}$$'" class="prose max-w-none" />
  80. </div>
  81. </div>
  82. <div class="mt-12">
  83. <h2 class="text-2xl font-semibold mb-4">在候选题中使用</h2>
  84. <div class="bg-gray-50 p-4 rounded-lg mb-4">
  85. <p class="text-sm text-gray-600 mb-2">示例候选题内容(带 LaTeX 公式):</p>
  86. <x-markdown-renderer :content="
  87. '1. 计算下列各式的值:
  88. (1) \\(2x + 3\\) 当 \\(x = 5\\) 时
  89. (2) \\(\\frac{x^2 - 1}{x + 1}\\) 当 \\(x = 3\\) 时
  90. 2. 解方程:
  91. $$x^2 - 5x + 6 = 0$$
  92. 3. 已知函数 \\(f(x) = 2x - 1\\),求 \\(f(3)\\) 的值。
  93. A. 4
  94. B. 5
  95. C. 6
  96. D. 7'" class="prose max-w-none" />
  97. </div>
  98. </div>
  99. <div class="mt-12">
  100. <h2 class="text-2xl font-semibold mb-4">使用说明</h2>
  101. <div class="bg-blue-50 border-l-4 border-blue-500 p-4">
  102. <p class="text-blue-800">
  103. 在 Blade 模板中使用:
  104. </p>
  105. <pre class="bg-gray-900 text-gray-100 p-4 rounded mt-2 overflow-x-auto text-sm"><code>&lt;x-markdown-renderer :content=\"$markdownText\" /&gt;</code></pre>
  106. </div>
  107. </div>
  108. </div>
  109. </div>
  110. </div>
  111. </div>
  112. </x-app-layout>