edges.json 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. [
  2. {
  3. "source": "P01",
  4. "target": "P02",
  5. "type": "successor",
  6. "comment": "知识点之间存在必要的学习衔接,用于帮助学生更顺畅地理解后续内容。"
  7. },
  8. {
  9. "source": "P02",
  10. "target": "P03",
  11. "type": "successor",
  12. "comment": "知识点之间存在必要的学习衔接,用于帮助学生更顺畅地理解后续内容。"
  13. },
  14. {
  15. "source": "P03",
  16. "target": "P04",
  17. "type": "successor",
  18. "comment": "知识点之间存在必要的学习衔接,用于帮助学生更顺畅地理解后续内容。"
  19. },
  20. {
  21. "source": "P04",
  22. "target": "P05",
  23. "type": "successor",
  24. "comment": "知识点之间存在必要的学习衔接,用于帮助学生更顺畅地理解后续内容。"
  25. },
  26. {
  27. "source": "P05",
  28. "target": "P06",
  29. "type": "successor",
  30. "comment": "因式分解建立在乘法公式的理解基础上,掌握乘法公式有助于学生快速看出可分解结构。"
  31. },
  32. {
  33. "source": "P06",
  34. "target": "F01",
  35. "type": "successor",
  36. "comment": "分式化简通常需要先把分子分母因式分解,这是学生顺利完成约分的关键步骤。"
  37. },
  38. {
  39. "source": "F01",
  40. "target": "F02",
  41. "type": "successor",
  42. "comment": "完成分式化简后,学生才能进行分式的加减乘除运算,这是题目的常见流程。"
  43. },
  44. {
  45. "source": "F02",
  46. "target": "E05",
  47. "type": "successor",
  48. "comment": "处理含分式的一元二次方程前,需要先完成分式运算的化简与统一。"
  49. },
  50. {
  51. "source": "E01",
  52. "target": "E02",
  53. "type": "successor",
  54. "comment": "理解一元一次方程后,学生才能掌握方程组的求解方法,如代入法或加减法。"
  55. },
  56. {
  57. "source": "E02",
  58. "target": "E05",
  59. "type": "successor",
  60. "comment": "部分二次方程可通过构造方程组模型来理解,因此方程组经验有助于学生理解二次方程。"
  61. },
  62. {
  63. "source": "H01",
  64. "target": "H02",
  65. "type": "successor",
  66. "comment": "掌握函数的基本概念后,学生才能理解一次函数的表示与图像特征。"
  67. },
  68. {
  69. "source": "H02",
  70. "target": "H03",
  71. "type": "successor",
  72. "comment": "理解一次函数的变化特征有助于学生更好地理解二次函数的曲线规律。"
  73. },
  74. {
  75. "source": "H03",
  76. "target": "H04",
  77. "type": "successor",
  78. "comment": "理解二次函数图像后,学生才能准确判断最值与开口方向。"
  79. },
  80. {
  81. "source": "E05",
  82. "target": "H04",
  83. "type": "successor",
  84. "comment": "求二次函数的最值往往依赖方程求顶点或开口方向,因此二次方程能力影响最值判断。"
  85. },
  86. {
  87. "source": "H04",
  88. "target": "F05",
  89. "type": "successor",
  90. "comment": "压轴综合题往往以二次函数最值作为关键突破点,因此掌握最值是完成压轴题的重要能力。"
  91. },
  92. {
  93. "source": "P06",
  94. "target": "E05",
  95. "type": "crosslink",
  96. "comment": "部分一元二次方程可通过因式分解直接求解,因此因式分解能力影响方程求解效率。"
  97. },
  98. {
  99. "source": "P06",
  100. "target": "H04",
  101. "type": "crosslink",
  102. "comment": "二次函数的解析式常需因式分解才能看出顶点与最值特征,因此因式分解是函数最值的重要辅助。"
  103. },
  104. {
  105. "source": "F02",
  106. "target": "E04",
  107. "type": "crosslink",
  108. "comment": "处理应用题(如行程、浓度)前,学生通常需要先完成相关的分式运算化简。"
  109. }
  110. ]