123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 |
- # -*- coding: utf-8 -*-
- from gpt.chatgpt import get_answer_from_gpt, get_article_gpt_pydantic
- from gpt.gpt_check import CheckGptAnswer, CheckArticleResult
- from tools.new_mysql import MySQLUploader
- from tools.loglog import logger, log_err_e
- from tools.thread_pool_manager import pool_executor
- from common.common_data import all_exchange_words
- from common.split_text import split_text_to_word, get_article_words_count
- from pydantic import BaseModel
- from cachetools import TTLCache
- from concurrent.futures import wait
- from random import randint, shuffle, sample
- import json, time
- import requests
- from openpyxl import load_workbook
- from tenacity import retry, stop_after_attempt, wait_fixed
- import httpx
- import asyncio
- from threading import Lock
- from collections import defaultdict
- from fastapi import BackgroundTasks
- def get_article_difficulty(article) -> int:
- """获取文章的难度值"""
- url = "http://qbank.yunzhixue.cn/api/article/analysis"
- data = {"body": article, "question": ""}
- try:
- response = requests.post(url, json=data)
- except Exception as e:
- log_err_e(e, msg="获取文章难度值;")
- return 0
- if response.status_code == 200:
- difficult_value = response.json()['data']['difficult']
- return difficult_value
- else:
- logger.error(f"错误状态码{response.status_code}")
- def find_interval(number) -> int:
- """
- 判断一个数字属于哪个难度等级区间。31级是例外情况,需要排查
- :param number: 要检查的数字。
- :return: 返回包含该数字的区间,如果没有找到,则返回 None。
- """
- intervals = [(1, 200), (201, 250), (251, 300), (301, 350), (351, 400), (401, 450), (451, 550), (551, 650), (651, 750), (751, 850),
- (851, 950),
- (951, 1100),
- (1101, 1250), (1251, 1400), (1401, 1550), (1551, 1700), (1701, 1900), (1901, 2100), (2101, 2300), (2301, 2600),
- (2601, 2900),
- (2901, 3200),
- (3201, 3500), (3501, 3900), (3901, 4300), (4301, 4700), (4701, 5100), (5101, 5500), (5501, 5900), (5901, 6500),
- (6501, 99999)]
- for index, (start, end) in enumerate(intervals, start=1):
- if start <= number <= end:
- return index
- logger.error(f"文章难度判断不对:{number}")
- return 0
- def merge_and_split(list1, list2):
- combined = list1 + list2
- import random
- random.shuffle(combined)
- two_thirds = []
- one_third = []
- total_length = len(combined)
- if total_length > 15:
- two_thirds = combined[:15]
- one_third = combined[15:]
- else:
- two_thirds = combined
- one_third = []
- return two_thirds, one_third
- class GetArticle:
- def __init__(self):
- self.m = MySQLUploader()
- self.callback_url_dict = defaultdict(str)
- self.real_ip_dict = defaultdict(str)
- self.demo_name = defaultdict(str)
- self.article_result = {}
- self.punctuation = [",", ".", "!", "?", ":", ";", '"', "–", "_", "-", "...", "......"]
- all_exchange_words.update(self.punctuation)
- self.exchange_data: dict[str, list] = {}
- self.read_spring_bamboo_exchange_table()
- def read_spring_bamboo_exchange_table(self):
- """变形是键,原型是值"""
- wb = load_workbook(r"data/春笋单词对照变形.xlsx", read_only=True, data_only=True)
- ws = wb.active
- for row in ws.values:
- prototype = row[0]
- exchange = row[1]
- if prototype not in self.exchange_data:
- self.exchange_data[prototype] = [exchange]
- else:
- self.exchange_data[prototype].append(exchange)
- wb.close()
- def parser_insert_to_mysql(self, resp_result):
- try:
- for single_article in resp_result['articles']:
- article = single_article['body']
- article_json = json.dumps(single_article)
- difficult_value = find_interval(get_article_difficulty(article))
- if not difficult_value:
- logger.error("文章难度等级为0;")
- sql = "INSERT INTO spring_bamboo_article (article_json,difficult_level) VALUES (%s,%s)"
- self.m.execute_(sql, (article_json, difficult_value))
- except Exception as e:
- logger.error(f"插入数据库时发生错误: {str(e)}")
- def submit_task(self, real_ip: str, core_words: list, take_count: int,
- demo_name: str, reading_level: int, article_length: int, exercise_id: int,
- background_tasks: BackgroundTasks):
- """
- core_words: 词义数据组
- take_count: 取文章数量 (int类型,正常是2篇,最大8篇)
- demo_name: 项目名称
- reading_level:阅读等级
- article_length:文章长度
- exercise_id:学案id
- background_tasks: FastAPI的后台任务管理器
- """
- task_id = randint(10000000, 99999999)
- logger.info(f"reading-comprehension 生成文章id。学案id:{exercise_id},task_id:{task_id}")
- try:
- self.real_ip_dict[task_id] = real_ip
- self.demo_name[task_id] = demo_name
- resp_result = self.run_task(core_words, task_id, exercise_id, take_count, reading_level, article_length)
- background_tasks.add_task(self.parser_insert_to_mysql, resp_result)
- logger.success(f"reading-comprehension 文章2任务完成。学案id:{exercise_id},taskid:{task_id}")
- return resp_result
- except Exception as e:
- err_msg = f"GetArticle提交任务失败{type(e).__name__},{e}"
- log_err_e(e, msg="GetArticle提交任务失败;")
- return err_msg
- finally:
- self.real_ip_dict.pop(task_id, None)
- self.demo_name.pop(task_id, None)
- def __parse_gpt_resp(self, gpt_resp: dict, core_words: list):
- return_json = {"articles": []}
- for choice in gpt_resp["choices"]:
- single_article_dict = json.loads(choice["message"]["content"])
- allWordAmount = 0
- articleWordAmount = get_article_words_count(single_article_dict["englishArticle"])
- allWordAmount += articleWordAmount
- for i in single_article_dict["questions"]:
- count_trunk = get_article_words_count(i["trunk"])
- count_candidates = sum([get_article_words_count(ii["text"]) for ii in i["candidates"]])
- allWordAmount += count_trunk
- allWordAmount += count_candidates
- usedMeanIds: list = single_article_dict['usedMeanIds']
- article_words = split_text_to_word(single_article_dict['englishArticle'])
- for i in core_words:
- meaning_id = i.get('meaning_id', 0)
- if not meaning_id:
- continue
- word = i["spell"]
- if meaning_id not in usedMeanIds and word in self.exchange_data:
- words_exchanges_list = self.exchange_data[word]
- for exchange_word in words_exchanges_list:
- if exchange_word in article_words:
- usedMeanIds.append(meaning_id)
- break
- single_article_dict["body"] = single_article_dict.pop("englishArticle")
- single_article_dict["chinese"] = single_article_dict.pop("chineseArticle")
- for q in single_article_dict['questions']:
- data = q['candidates']
- shuffled_candidates = sample(data, len(data))
- labels = ['A', 'B', 'C', 'D']
- for index, candidate in enumerate(shuffled_candidates):
- candidate['label'] = labels[index]
- q['candidates'] = shuffled_candidates
- return_json['articles'].append({**single_article_dict, "allWordAmount": allWordAmount, "articleWordAmount": articleWordAmount})
- return return_json
- @retry(stop=stop_after_attempt(3), wait=wait_fixed(2), reraise=True)
- def get_article(self, core_words: list, task_id: int, exercise_id: int, reading_level, article_length, n) -> dict:
- if not article_length:
- if 0 < reading_level <= 10:
- article_length = 50 + 10 * reading_level
- elif 10 < reading_level <= 20:
- article_length = 150 + 30 * (reading_level - 10)
- else:
- article_length = 450 + 20 * (reading_level - 20)
- for index, (start, end) in enumerate([(1, 8), (9, 16), (17, 24), (24, 30)], start=1):
- if start <= reading_level <= end:
- difficulty_control_stage = index
- break
- else:
- difficulty_control_stage = 2
- diffculty_control = {
- 1: {"grade": "小学", "desc_difficulty": "最简单最容易没有难度", "paragraph_count": "1-2",
- "desc2": "文章整体非常简洁,通俗易懂,适合初学者,刚入门,单词全是最常见的,语句通顺即可。",
- "choice_desc": "选择题难度尽可能简单,参考中国小学生水平"},
- 2: {"grade": "初中", "desc_difficulty": "简单、常见、难度低", "paragraph_count": "2-3",
- "desc2": "文章整体难度适中,大约和中国初中生,中国CET-3,雅思4分这样的难度标准。",
- "choice_desc": "选择题难度适中,但是不要所有选择题让其直接在文中找到答案,参考中国初中生水平,中考标准。"},
- 3: {"grade": "初中", "desc_difficulty": "简单、常见、难度低", "paragraph_count": "2-3",
- "desc2": "文章整体难度适中,大约和中国初中生,中国CET-3,雅思4分这样的难度标准。",
- "choice_desc": "选择题难度适中,但是不要所有选择题让其直接在文中找到答案,参考中国初中生水平,中考标准。"},
- 4: {"grade": "高中", "desc_difficulty": "常见、高中难度的", "paragraph_count": "3-5",
- "desc2": "文章整体难度适中,大约和中国的高中生,中国CET-6,雅思6分这样的难度标准。",
- "choice_desc": "选择题难度偏难,要有迷惑性混淆性,答案不要出现直接在文中,4个选项要学生推理或逻辑判断,参考中国高中生水平,高考标准。"}
- }
- grade = diffculty_control[difficulty_control_stage]["grade"]
- select_diffculty = diffculty_control[difficulty_control_stage]["desc_difficulty"]
- select_paragraph_count = diffculty_control[difficulty_control_stage]["paragraph_count"]
- desc2 = diffculty_control[difficulty_control_stage]["desc2"]
- choice_desc = diffculty_control[difficulty_control_stage]["choice_desc"]
- shuffle(core_words)
- core_words_meaning_str = "; ".join([f"[{i['meaning_id']} {i['spell']} {i['meaning']}]" for i in core_words])
- no_escape_code = r"\\n\\n"
- sys_prompt = "你是一个专业的英语老师,擅长根据用户提供的词汇生成对应的英语文章和中文翻译和4个配套选择题。"
- q = f"""下面我会为你提供一组数据,[单词组](里面包含词义id,英语单词,中文词义),请根据这些单词的中文词义,\
- 生成一篇带中文翻译的考场英语文章,英语文章和中文翻译要有[标题]。特别注意这个单词有多个词义时,生成的英语文章一定要用提供的中文词义,例如我提供单词[change 零钱],就不要使用[变化]的词义。
- 要求:
- 1.必须用提供的这个词义的单词,其他单词使用{select_diffculty}的单词。{desc2}{choice_desc}
- 2.优先保证文章语句通顺,意思不要太生硬。不要为了使用特定的单词,造成文章语义前后不搭,允许不使用个别词义。
- 3.文章中使用提供单词,一定要和提供单词的中文词义匹配,尤其是一词多义时,务必使用提供单词的词义。必须要用提供单词的词义。如果用到的词义与提供单词词义不一致,请不要使用这个单词。
- 4.生成的文章要求{article_length}词左右,可以用{no_escape_code}字符分段,一般{select_paragraph_count}个段落左右。第一段是文章标题。不需要markdown格式。
- 5.允许不使用[单词组]的个别单词,优先保证文章整体意思通顺连贯和故事完整。
- 提供[单词组]:{core_words_meaning_str};
- """
- try:
- real_ip = self.real_ip_dict[task_id]
- demo_name = self.demo_name[task_id]
- gpt_resp = get_article_gpt_pydantic(q, temperature=1.2, real_ip=real_ip, demo_name=demo_name, model='gpt-4.1',
- check_fucn=CheckArticleResult.get_article_1, max_tokens=15000,
- sys_prompt=sys_prompt, n=n, task_id=task_id, exercise_id=exercise_id)
- multi_articles_dict = self.__parse_gpt_resp(gpt_resp=gpt_resp, core_words=core_words)
- return multi_articles_dict
- except httpx.HTTPError as e:
- logger.error(f"HTTP请求错误: {str(e)}")
- raise
- except json.JSONDecodeError as e:
- logger.error(f"JSON解析错误: {str(e)}")
- raise
- except Exception as e:
- log_err_e(e, f"gpt生成文章回复其他错误.")
- raise
- def run_get_article_task(self, core_words, task_id, exercise_id, take_count, reading_level, article_length) -> dict:
- """
- :param core_words: 核心单词数据,优先级1;可能为空
- :param task_id: 任务id
- :param take_count: 文章数量
- :param reading_level:阅读等级
- :param article_length:文章长度
- :return:
- """
- try:
- return_json = self.get_article(core_words, task_id, exercise_id, reading_level, article_length, n=take_count)
- return return_json
- except Exception as e:
- logger.error(f"运行文章任务时发生错误: {str(e)}")
- raise
- def run_task(self, core_words, task_id, exercise_id, take_count, reading_level, article_length):
- try:
- outside_json = self.run_get_article_task(core_words, task_id, exercise_id, take_count, reading_level, article_length)
- return outside_json
- except Exception as e:
- log_err_e(e, msg="外层总任务捕获错误")
- def cleanup(self):
- """清理所有资源"""
- pass
|